spalah.dataframe
SchemaComparer
The SchemaComparer is to compare two spark dataframe schemas and find matched and not matched columns.
Source code in spalah/dataframe/dataframe.py
459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 |
|
matched: List[tuple] = list()
instance-attribute
List of matched columns
not_matched: List[tuple] = list()
instance-attribute
The list of not matched columns
__init__(source_schema, target_schema)
Constructs all the necessary input attributes for the SchemaComparer object.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
source_schema |
T.StringType
|
source schema to match |
required |
target_schema |
T.StringType
|
target schema to match |
required |
Examples:
>>> from spalah.dataframe import SchemaComparer
>>> schema_comparer = SchemaComparer(
... source_schema = df_source.schema,
... target_schema = df_target.schema
... )
Source code in spalah/dataframe/dataframe.py
465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 |
|
compare()
Compares the source and target schemas and populates properties matched
and not_matched
Examples:
>>> # instantiate schema_comparer firstly, see example above
>>> schema_comparer.compare()
Get list of all columns that are matched by name and type:
>>> schema_comparer.matched
[MatchedColumn(name='Address.Line1', data_type='StringType')]
Get unmatched columns:
>>> schema_comparer.not_matched
[
NotMatchedColumn(
name='name',
data_type='StringType',
reason="The column exists in source and target schemas but it's name is case-mismatched"
),
NotMatchedColumn(
name='Address.Line2',
data_type='StringType',
reason='The column exists only in the source schema'
)
]
Source code in spalah/dataframe/dataframe.py
654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 |
|
flatten_schema(schema, include_datatype=False, column_prefix=None)
Parses spark dataframe schema and returns the list of columns If the schema is nested, the columns are flattened
Parameters:
Name | Type | Description | Default |
---|---|---|---|
schema |
StructType
|
Input dataframe schema |
required |
include_type |
bool
|
Flag to include column types |
required |
column_prefix |
str
|
Column name prefix. Defaults to None. |
None
|
Returns:
Type | Description |
---|---|
list
|
The list of (flattened) column names |
Examples:
>>> from spalah.dataframe import flatten_schema
>>> flatten_schema(schema=df_complex_schema.schema)
returns the list of columns, nested are flattened:
>>> ['ID', 'Name', 'Address.Line1', 'Address.Line2']
Source code in spalah/dataframe/dataframe.py
337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 |
|
script_dataframe(input_dataframe, suppress_print_output=True)
Generate a script to recreate the dataframe The script includes the schema and the data
Parameters:
Name | Type | Description | Default |
---|---|---|---|
input_dataframe |
DataFrame
|
Input spark dataframe |
required |
suppress_print_output |
bool
|
Disable prints to console. Defaults to True. |
True
|
Raises:
Type | Description |
---|---|
ValueError
|
when the dataframe is too large (by default > 20 rows) |
Returns:
Type | Description |
---|---|
str
|
The script to recreate the dataframe |
Examples:
>>> from spalah.dataframe import script_dataframe
>>> script = script_dataframe(input_dataframe=df)
>>> print(script)
Source code in spalah/dataframe/dataframe.py
394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 |
|
slice_dataframe(input_dataframe, columns_to_include=None, columns_to_exclude=None, nullify_only=False, generate_sql=False, debug=False)
Process flat or nested schema of the dataframe by slicing the schema or nullifying columns
Parameters:
Name | Type | Description | Default |
---|---|---|---|
input_dataframe |
DataFrame
|
Input dataframe |
required |
columns_to_include |
Optional[List]
|
Columns that must remain in the dataframe unchanged |
None
|
columns_to_exclude |
Optional[List]
|
Columns that must be removed (or nullified) |
None
|
nullify_only |
bool
|
Nullify columns instead of removing them. Defaults to False |
False
|
debug |
bool
|
For extra debug output. Defaults to False. |
False
|
Raises:
Type | Description |
---|---|
TypeError
|
If the 'column_to_include' or 'column_to_exclude' are not type list |
ValueError
|
If the included columns overlay excluded columns, so nothing to return |
Returns:
Name | Type | Description |
---|---|---|
DataFrame |
DataFrame
|
The processed dataframe |
Examples:
>>> from spalah.dataframe import slice_dataframe
>>> df = spark.sql(
... 'SELECT 1 as ID, "John" AS Name,
... struct("line1" AS Line1, "line2" AS Line2) AS Address'
... )
>>> df_sliced = slice_dataframe(
... input_dataframe=df,
... columns_to_include=["Name", "Address"],
... columns_to_exclude=["Address.Line2"]
... )
As the result, the dataframe will contain only the columns Name
and Address.Line1
because Name
and Address
are included and a nested element Address.Line2
is excluded
>>> df_result.printSchema()
root
|-- Name: string (nullable = false)
|-- Address: struct (nullable = false)
| |-- Line1: string (nullable = false)
Source code in spalah/dataframe/dataframe.py
214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 |
|